www.PapaCambridge.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

5070 CHEMISTRY

5070/22

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

		7.	
Page 2	Mark Scheme: Teachers' version	Syllabus	
	GCE O LEVEL – May/June 2012	5070	

- **A1** (a) $^{17}_{8}$ O
 - **(b)** $^{39}_{19} \, \text{K}^+ \, / \, ^{24}_{12} \, \text{Mg}^{2+}$
 - (c) ¹⁴₆C [1]
 - (d) ${}^{14}_{6}\text{C} / {}^{16}_{8}\text{O}^{2-}$ [1]
 - (e) ²⁰₁₀ Ne [1]
 - (f) 40 Ca [1]

[Total: 6]

- A2 (a) (i) Zinc hydroxide / $Zn(OH)_2$ [1]
 - (ii) Zn²⁺(aq) + 2OH⁻(aq) → Zn(OH)₂(s) (1)
 Correct balanced equation (1)
 Correct state symbols dependent on correct formulae (1)
 - (b) X zinc / Zn (1)Y - zinc nitrate / Zn(NO₃)₂ (1) [2]
 - (c) (i) mass of sample = 4.21 g (1) $M_r = 46 (1)$ [2]
 - (ii) Mole ratio nitrogen oxygen = 0.0914 : 0.183 (1) NO₂ (1) [2]

[Total: 9]

- A3 (a) Any two from
 - Saves (finite) resources / need to extract metals decrease
 - Saves energy / less energy to recycle (than to extract from ore);
 - Reduces disposal problems / less landfill
 - Reduces mining / less scarring of landscape (due to mining)
 - less litter
 - fewer toxic gases / fewer harmful gases [2]

Allow: deforestation / less (heavy) metal pollution / less dumped

		-		
Page 3	Mark Scheme: Teachers' version	Syllabus	.0	
	GCE O LEVEL – May/June 2012	5070	10.	-

 Cambridge.com

Correct structure (2 marks)

[2]

Allow: single repeating unit with continuation bonds with brackets and n

Allow: multiple units e.g. 4 or 6

(c) Any two from

Н

- Causes litter / unsightly;
- Fills up land-fill sites / need land-fill sites
- Incineration produces toxic gases / burning makes carbon monoxide / burning makes (more) carbon dioxide / incineration (of polymer) increases global warming;
- Wastes a finite resource / waste fossil fuels;
- Blocks drains / blocks water flow / harms fishes / sea animals e.g. turtles choke on it [2] **Allow:** incineration produces harmful gases
- (d) (i) Condensation [1]
 - (ii) Correct amide linkage [1]
 O H

Allow: -C-N- between each box

(iii) Fats / lipids: [1]
Allow: oils

(e) (i) SiO₂ [1]

(ii) Many (covalent) bonds / (covalent) giant structure / macromolecule / all atoms joined together (1)

Takes a lot of energy to break <u>bonds</u> / hard to break <u>bonds</u> / high temperature needed to break <u>bonds</u> / <u>bonds</u> are strong (1) [2]

(iii) No free electrons / no delocalised electrons / no sea of electrons / all electrons in covalent bonds / electrons cannot move [1]

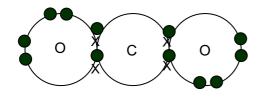
[Total: 13]

4 (a) (i)
$$N_2 + O_2 \rightarrow 2NO$$
 [1]

(ii)
$$2NO + O_2 \rightarrow 2NO_2$$
 (1) [1]

(b)
$$2NO_2 + H_2O \rightarrow HNO_3 + HNO_2$$
 [1]

		2	
Page 4	Mark Scheme: Teachers' version	Syllabus	2
	GCE O LEVEL – May/June 2012	5070	100
	-		AO 4


- (c) (i) Carbon dioxide / CO₂ (1)
 - (ii) Calcium nitrate (1) Ca(NO₃)₂ (1)
 Allow: Calcium nitrite / Calcium nitrate(III) (1) Ca(NO₂)₂ (1)

(d) Any two from

- Seawater is cheap(er):
- Seawater removes more of the pollutant gases / seawater more effective at removing pollutant gases
- Seawater does not involve landscape destruction / no mining involved
- doesn't produce carbon dioxide / doesn't increase global warming
- seawater is readily available / seawater is abundant

[2]

(e)

[1]

[Total: 9]

A5 (a) 1.2 [1]

(b) $2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$ [1] **Allow:** $KOH + H_2SO_4 \rightarrow KHSO_4 + H_2O$

(c) (i) $30.0 \,\mathrm{cm}^3 \,/\, 30 \,\mathrm{cm}^3$ [1]

(ii) Moles of acid = 0.00125 (1)
Moles of KOH = 0.00250 (1)
[KOH] = 0.0833 / 0.083 / 0.08 (1)
Allow ecf from wrong moles of KOH and/or wrong volume of KOH from part (c)(i) [3]

(d) Any one difference (1)

Correct explanation of that difference (1) e.g.

Graph will start above pH 1.2 / higher starting pH (1) because ethanoic acid is a weak acid (1)

OR

Neutralisation volume will be 15.0 cm³ (1) because ethanoic acid reacts in a 1:1 mole ratio (1) **OR**

Vertical section of graph will be a smaller (1) because ethanoic acid is a weak acid (1) [2]

[Total: 8]

			The state of the s								
	Page 5		Mark Scheme: Teachers' version	Syllabus							
			GCE O LEVEL – May/June 2012	5070							
В6	(a)		n that) releases heat / (reaction that) releases ene energy given out is greater than energy absorbed /								
	(b)	Bond bre	energy (1)								
		More end Allow: b negative	[2] s exothermic / enthalpy change is								
	(c)	Implication OR	umber of moles								
		(Moles o	of hydrogen = 83.3) moles of oxygen = 41.7 / 41.65	(1)							
		Volume	of oxygen = 1000 dm ³ (1)	[2]							
	(d)	•	uation involves reduction since electrons are gain ectrons / oxygen is reduced because its oxidation r	• •							
			equation involves oxidation since electrons are los ectrons / hydrogen is oxidised because its oxidation								
	(e)	Water / hydrocarbons (1)Allow: ethane / propane / alkanes / methane + steam / naphthaAllow: cracking									
	(f)	Advantage – directly converts chemical energy into electrical energy / more ene makes no pollutants / doesn't release harmful gases / uses a renewable resource									
		Disadvantage – storage problems associated with hydrogen or oxygen / hydrogen explosing pressurised tanks needed / pollution problems on disposal of fuel cell / pollution problems while manufacturing fuel cells (1)									
				[Total: 10]							
В7	(a)	a) 0.71g Allow: 0.709 / 0.704g									
	(b)	Copper ((carbonate)	[1]							
	(c)	Used diff Allow: d carbon ir	[1] ecular masses of compound / % of								

(d) (i) calcium ions with Ca²⁺ and 2.8.8 as drawn or as numbers (1) oxide ion with O²⁻ and 2.8 as drawn or as numbers (1)

[2]

													my	1	
	Pa	ge 6	6	Mark Scheme: Teachers' version Syllabus						IS	A.	1			
					G	CE O L	EVEL	. – May/	June 2	012		5070		200	
		(ii) Reacts with sand to make slag / reacts with silicon dioxide to make calciu removes silicon dioxide as slag (1)								ciun	Cambride				
	(e)	(i)	OR		$H^{+} \rightarrow F$ $2H^{+} \rightarrow$		· H ₂ O ('	1)							[1]
				Ü			·	•							
		(ii)		l exce er (1)	ess cop	per(II)) carbo	onate to	hydroc	hloric acid	id (1)				
			Eva	porát				y / evap	orate to	crystalli	isatior	n point (1)			
			Allo	w: le	eave to	crysta	ıllise								[3]
														[To	otal: 10]
B8	(a)	Correct structure showing all atoms and bonds (1) Contains a (carbon-carbon) double bond (1) Has carbon and hydrogen only (1)						[3]							
	(b)	Isoı	mer (1)											[1]
	(c)	C ₁₀	H ₂₀ (1	1)											[1]
	(d)	Melting point decreases and increases / melting point is irregular down the series AND													
				oint i	ncreas	es all t	the time	ie / boili	ng poin	t increase	es reg	gularly / sh	iows a t	rend	[1]
	(e)	Gas	s bec	ause	boiling	g point	is lowe	er than	room te	mperatur	re / bo	oiling poin	t is – 6 °	C	[1]
	(f)	C ₁₆	H ₃₄ →	→ 3C2	₁H ₈ + C	;₄H₁₀ (1	1)								[1]
	(g)	(i)	C₄H _i	l ₈ Br ₂	(1)										[1]
		(ii)	Buta	an-1-	ol / but	an-2-o	ol / buta	anol							[1]
														[To	otal: 10]
В9	(a)	Rea	action	n is fa	ster be	ecause	e partic	cles are	moving	faster / p	particl	es have n	nore ene	ergy (1)
				_				effectiv			ore pa	articles ha	ve ener	gy ab	ove that

of the activation energy / more successful collisions (1)

[2]

			~
Page 7	Mark Scheme: Teachers' version	Syllabus	.0
	GCE O LEVEL – May/June 2012	5070	20

(b) Position of equilibrium shifts to the left / shift backwards / shifts towards the reactareaction favoured (1)

More moles (of gas) on the left hand side / 4 moles on the left and 2 on the right / great volume (of gas) on left / more molecules on left (1)

[2]

(d)
$$2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$$

[1]

(e) (i) potassium dichromate / potassium manganate(VII) / potassium permanganate / potassium manganate (1)

heat / warm / boil / reflux (1)

[2]

(ii) HCO₂H (1)

Allow: HCOOH / displayed formula

[1]

[Total: 10]